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A B S T R A C T   

Human daily activity recognition (HDAR) using wearable sensors is an important task for researchers aiming to 
develop an effective and feasible model which is capable of accurately detecting human motion patterns. These 
applications provide elderly care, surveillance systems, and wellness tracking. Despite the pervasive use, 
recognition and monitoring of human physical activities remains inaccurate, which may contribute to negative 
reactions and feedback. This paper addresses a data-driven approach to recognizing human daily activities in an 
indoor-outdoor environment. To improve the classification and recognition of human life-log activities (for 
example, walking, drinking, and exercising), a model is introduced that incorporates pre-processing (such as 
denoising), hybrid features extraction from four domains, including time, frequency, wavelet, and time- 
frequency respectively. After that, stochastic gradient descent is exploited to optimize the selected features. 
The optimal extracted features are advanced to random forest classifiers in order to develop adaptive for human 
life-log activities. Additionally, the proposed HDAR model is experimentally evaluated on three benchmark 
datasets, namely, USC-HAD, which is comprised of 12 physical activities, IM-WSHA, which involves 11 life-log 
activities, and MOTIONSENSE which contains six static and dynamic activities, respectively. The experimental 
results show that the proposed HDAR method significantly achieves better results and outperforms others in 
terms of recognition rates of 91.08%, 91.45%, and 93.16% respectively, when the USC-HAD, IM-WSHA, and 
MOTIONSENE databases are applied.   

1. Introduction 

Automatic human daily activity recognition (HDAR) has become an 
active topic of body-worn sensor based behavioral study in the last 
decade due to its significance in many real-world applications, including 
ergonomics, fitness tracking, elderly care, surveillance, security, and 
sports, etc [1–5]. Additionally, the ubiquity and usability of 
wearable-based inertial sensors in smart watches, fitness monitoring 
bands, and smartphones embedded with fused sensors (e.g., acceler
ometers, gyroscopes, and magnetometers) open up new opportunities 
for real-time monitoring of human daily life activities. The utilization of 
these wearable sensors for monitoring studies has been in practice and 
demand, but there is still a need for a system capable of recognizing 
activities with limited contextual information [6]. In essence, activity 
data collected from multiple dimensions are analyzed in order to 
recognize and monitor various motion patterns and behaviors. As a 
result, recognition of daily living activities, including walking, standing, 
sleeping, and cooking, is particularly pivotal for smart homes and 
elderly care monitoring. However, the system can not always accurately 

reflect human activity detection, which gives rise to complex move
ments and understanding behaviors. 

Wearable sensors have transformed every aspect of human daily life, 
from e-health care to personal living comfort. With the advancement of 
wearable-based inertial sensors, these sensors are playing a significant 
role in our daily lives by allowing us to access our environments such as 
temperature, humidity, and thermostat, etc. Fortunately, greater affor
dances, capabilities, and features are emerging with advancements in 
wearable sensors. Additionally, these wearable-based inertial sensors 
have resulted in significant demand in research for healthcare, security 
and surveillance-based systems, wellbeing, and biofeedback systems [7, 
8]. Furthermore, each of these real-world applications involves 
real-time and continuous monitoring. These applications enable vital 
access to information about the wellbeing of vulnerable elderly in
dividuals and children by incorporating multiple wearable-based iner
tial sensors on different parts of the body [9,10]. Similarly, security and 
surveillance-based systems are capable of detecting potentially hazard
ous or odd events in their vicinity and notifying emergency response 
teams immediately. With regard to fitness tracking, wearable inertial 
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sensors can provide continuous monitoring for daily fitness in order to 
make training more effective and efficient. Intelligent home-based sys
tems provide continual physical and cognitive stimulation that aids 
children’s growth and enhances their learning capabilities. In the 
context of healthcare, biofeedback treatment works well with VR-based 
systems to measure and assess the functioning of the body and to 
monitor changes in physiological functions, including blood pressure 
and heart rate. Additionally, these systems can also be useful for anxiety 
and stress reduction techniques. 

Recently, we have a variety of inertial sensors at our disposal, such as 
accelerometers, gyroscopes, and magnetometers, to facilitate us in 
recognizing environmental changes [11,12]. The fusion of these sensors 
enables these devices to extract vital information about human complex 
body patterns in three-dimensional space. For example, an accelerom
eter is a type of sensor generally used for HAR and can measure both 
static (such as gravity) and dynamic (vibrations) acceleration forces 
impacting on the sensors, providing relevant data for the detection of 
complex motion patterns. The gyroscope is another popular sensor that 
can measure angular velocity. In the context of wearable sensors, 
magnetometer sensors analyze the relative changes in existing magnetic 
field intensity and provide compass calibration information. In general, 
these three sensors are fused to enhance the capability of human activity 
monitoring. The augmentation of accelerometers, gyroscopes, and 
magnetometers into a single device is stated as an inertial sensor or 
inertial measurement unit (IMU) [13]. 

Therefore, the objective of this paper is to deal with the classification 
of human daily activities (walking, cooking, sleeping, drinking, and 
ironing, etc.) via wearable-based inertial sensors that detect complex 
motion patterns in nine degrees of freedom (9-DoF). The system detects 
changes in the position, rotation, and orientation of the body in three- 
dimensional space in order to determine static postures and dynamic 
motion patterns. The main aim of this work is to improve recognition 
and detection while lowering the complexity of the systems needed to 
recognize human daily activities. The proposed human daily activity 
recognition involves four main steps: data acquisition and signal 
denoising, hybrid feature extraction and selection, optimization, and 
classification. Initially, inertial data is acquired and denoised with a 
third-order median filter in order to reduce the noise ratio of the inertial 
data. Then, we adopted hybrid feature extraction techniques (i.e., time 
domain, frequency domain, wavelet features, and time-frequency 
domain features) from the denoised data. In the context of features, 
these hybrid descriptors are further optimized with stochastic gradient 
descent (SGD) in order to select the optimal descriptors for further 
classification. Finally, the model incorporates a random forest classifi
cation algorithm to recognize and preset parameters for classifying 
human daily activities from optimal feature vectors in order to attain a 
significant recognition rate. To evaluate the performance of our pro
posed HDAR system, we applied our proposed model to three public 
benchmark datasets: the IM-Wearable Smart Home Activities (IM- 
WSHA), the University of Southern California Human Activity Dataset 
(USC-HAD), and the MotionSense datasets. The major contributions and 
highlights of this study is summarized as follows:  

• Hybrid descriptor techniques are adapted from diverse domains, 
including the time domain, time-frequency domain, frequency 
domain, and wavelet domain.  

• In order to deal with the complex human activity patterns and to 
improve the recognition rate of all three datasets, we proposed an 
SGD feature selection-based random forest model that provided 
contextual information coupled with classifying activities.  

• Additionally, a detailed analysis was carried out on three public 
benchmark datasets, namely, IM-WSHA, USC-HAD, and Motion
Sense datasets for human daily activities. The experimental results 
display a higher recognition rate for the proposed methods than for 
other state-of-the-art methods.  

• Furthermore, we also compared the performance with other state-of- 
the-art classifiers for further HDAR analysis.  

• We also provide baseline literature information that other studies 
can employ to analyze potential fusion techniques.  

• The remainder of the article is structured as follows. In Section II, we 
briefly review the related work on inertial sensor fusion methods for 
HDAR and vision-based sensors. Section III addresses the details of 
the proposed architecture of our HDAR model. In Section IV, we 
evaluate the experimental setup for three public benchmark datasets 
and also present the empirical comparison of the various metrics for 
that purpose.  

• Finally, Section V summarizes the findings of the study with a 
conclusion. 

2. Related work 

Various related works exploited machine learning methods for 
human daily activity recognition using a set of multiple sensors, 
including image and inertial sensors [14]. This section comprehensively 
summarizes previously and currently conducted researched HDAR 
analysis via vision sensors and wearable-based inertial sensors. 

2.1. Image sensor-based HDAR analysis 

In image-based HDAR systems, many researchers have exploited 
image and video sensing technologies from multiple sensors, including 
RGB and RGB-D sensors, which are primarily used in security and sur
veillance systems for the tracking and detection of 3D movements of 
humans. Espinosa et al. [15] proposed a fall detection system via a 2D 
convolution neural network (CNN) and multiple vision sensors. They 
demonstrated an approach for feature extraction via the fixed window 
method based on time and the optical flow method. Additionally, they 
tested the proposed approach only on a single public dataset. Experi
mental results have shown better performance compared with other 
state-of-the-art methods, but in order to evaluate the whole performance 
of the proposed approach, multiple datasets should be introduced. In 
Ref. [16], Anitha et al. presented image processing techniques for 
human action recognition. Initially, video sequences of individuals 
walking, jogging, and hand waving are converted into 2D frames. Then, 
these obtained frames are denoised followed by feature extraction via 
Laplace smoothing transform (LST). Finally, k-nearest neighbor (KNN) is 
utilized for classification tasks. The main limitation of this work is that 
the KNN classifier performs poorly with high-dimensional data. Addi
tionally, it also takes an excessive amount of time to calculate the dis
tance between datasets points, both of which significantly reduce the 
model’s performance. Sharif et al. [17], proposed a model for a human 
action recognition system. Their proposed model comprises two phases. 
Initially, various human motion regions are detected via a fusion method 
which is based on uniform distributions and expectation maximization 
(EM) segmentation. Secondly, augmented features from the video seg
ments from multiple databases involving histogram of gradients (HOG), 
local binary patterns (LBP), and Harlick features are extracted. Finally, 
modified joint entropy along with the Euclidean-based feature selection 
techniques are combined with a multi-class SVM algorithm in order to 
study human daily activities in real-time. The proposed model has 
produced better results in low-dimensionality datasets. However, to 
make the proposed model more diverse, the database dimension should 
be increased. Additionally, the proposed model is affected by varying 
lighting conditions, which results in segmentation accuracy. In 
Ref. [18], Hu et al. proposed a hierarchical model using Kinect sensors 
for human interaction recognition. Additionally, this hierarchical model 
is used to determine the most salient features of multiple-person in
teractions. Therefore, at the most upper level, an interaction is split into 
two types of atomic actions, including salient and non-salient actions. 
Furthermore, at the lowest level, a salient is presented to detect the joint 
that experiences the largest displacement. Finally, the hierarchical 
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model has been evaluated against an SVM based multi-class classifier. 
Kong et al. [19], introduced a discriminative model for classifying ac
tions in a partial video sequence. Their proposed model captured the 
whole evolution action through time and also involve the spatiotem
poral nature of a video sequence. But the main drawback is that it re
quires all predefined rules for human daily interaction activities. In 
Ref. [20], Ince et al. designed a biometric-based system to monitor 
human daily activities in 3D space using multiple skeleton joint angle 
patterns. Additionally, this system utilizes an RGB-depth camera, which 
seems to be ideal for surveillance-based systems and in a healthcare 
environment. But the main limitation of the proposed model is not 
enough to deal with the false skeleton tracking induced incorrect angle 
calculations which lead to imprecise classification. Wang et al. [21], 
deals with a probabilistic based graphical model for real-time moni
toring of human daily living activities. Initially, they split the model into 
two parts, including discriminative boundaries and subtractive transi
tions. Additionally, they address the segmentation problem for human 
activities. However, these methods function only in offline mode. 

2.2. Wearable inertial sensor-based HDAR analysis 

Advancements in wearable sensing technologies assist researchers in 
building different smart systems to recognize and monitor human daily 
life activities. Currently, wearable inertial sensors are capable of 
detecting abnormal and uncertain events and can provide support in 
times of need. Therefore, in pursuit of human activity monitoring, re
searchers have exploited multiple sensors integration in order to develop 
a more effective method of evaluating human locomotion and to 
enhance living comfort. In a comparative study, Shahar et al. [22] 
analyzed the four inertial sensors that comprise accelerometer and gy
roscope signals embodied in the different body positions, including left 
and right wrists, chest, and waist. Additionally, statistical features are 
extracted for hockey playing activities, such as mean, minimum and 
maximum peak, and standard deviation features. Their model signifi
cantly achieves better performance. But the main limitation of this work 
is that the model is optimally suited for sports activities. Additionally, 
extracted statistical features might not be ideal as non-optimal de
scriptors will be acquired that do not provide optimal performance in a 
real-time environment. In Ref. [23], Uddin et al. introduced a feature 
selection technique based on the guided random forest for human daily 
activity recognition. Initially, a guided random forest algorithm is 
trained on the publicly available dataset to obtain key scores for the 
descriptors. The chosen scores are then incorporated into the feature 
selection phase. The guided random forest algorithm enables the 
optimal selection of descriptors that contribute to the human activity 
recognition model. Feng et al. [24], proposed a random forest ensemble 
technique for recognizing HDAR via multiple wearable inertial sensors. 
Additionally, the augmentation of random forest classifier delivers 
better monitoring capabilities for wearable sensor-based healthcare 
models. In Ref. [25], Jing et al. proposed a model for recognizing human 
daily living activities along with fall detection using multiple wearable 
inertial sensors. Additionally, the entire model is compared against the 
whole activity set comprising of static, random, and periodic actions. 
Furthermore, multiple features are extracted in the time and frequency 
domains. The limitations of their proposed method were only tested on a 
small number of individuals when monitoring activities and behaviors. 
Abidine et al. [26] introduced a weighted support vector machine (SVM) 
for monitoring life-log activities in a smart home environment. Addi
tionally, they addressed various implementation issues with the HAR 
methods, including redundant feature descriptors and imbalance classes 
in the training data. To address these concerns, they presented a 
framework for recognizing human life-log activities in a smart home 
environment. Their framework is a hybrid of weighted SVM, principal 
component analysis (PCA), and linear discriminant analysis (LDA). 
Initially, the training data set is minimized via the LDA and PCA de
scriptors in order to attain optimal feature descriptors. Then, for each 

class, weighted SVM is utilized to handle unbalanced life-log activity 
datasets to enhance the recognition accuracy. In Ref. [27], Cillis et al. 
developed a pervasive solution for four human locomotion patterns, 
including walking, standing, and ascending and descending stairs via a 
wearable inertial-based triaxial accelerometer sensor. Their proposed 
solution incorporates minimum feature descriptors to recognize and 
detect four distinct locomotion patterns. The experimental results indi
cate a better recognition rate when dealing with static activities, but a 
lower rate for dynamic activities such as ascending and descending 
stairs. 

3. Proposed solution framework 

The proposed HDAR system recognizes human physical activities by 
exploiting three wearable inertial sensors from accelerometer, gyro
scope, and a magnetometer. Initially, multi-fused signals are acquired 
from three inertial sensors and are filtered via a third-order median filter 
in order to deal with noisy signal segments emanated by abrupt motion 
movements. Following the denoising phase, the filtered inertial signal 
values are retained to provide robust and effective feature components. 
Thirdly, we extracted hybrid feature descriptors from different domains, 
including time, frequency, wavelet, and time-frequency features. Addi
tionally, the extracted features are scaled using extreme values to avoid 
the possibility of any complex signal values emerging during the later 
phases of feature selection. Thereafter, retrieved feature descriptors are 
optimized by the stochastic gradient descent (SGD) algorithm for 
optimal feature selection. Finally, in the wearable HDAR, the optimized 
features acquired from SGD are catered to a random forest (RF) classifier 
to classify human physical activities in real-time. The proposed HDAR 
architecture of our complete model is depicted in Fig. 1. 

3.1. Signal processing and denoising 

IMU is highly sensitive to even the least amount of fluctuations, so 
any unintended shift is able to affect the signal shape entirely and also 
disrupt the feature descriptor extraction and optimization phase. 
Therefore, during the signal processing and denoising phase, we initi
ated by analyzing the noise interference associated with the inertial 
signals. After analyzed the abnormal signal intensity in the frame data, 
we opted for a third-order median filter, a denoising method that deals 
with the rigorous motion pattern in the framed signal without 
comprising any significant information. 

Additionally, the third-order median filter adjusts the signal’s shape 
to closely follow normal motion patterns. Furthermore, we also evalu
ated the performance of different filters by exploiting Gaussian and 
moving average filters to lessen the noise associated with the IMU sig
nals. However, we adopted the third-order median filter, which deliv
ered enhanced results when compared to the other two filters, i.e., 
Gaussian and the moving average filter. The raw signal and filtered 
signal components of the median, Gaussian, and moving average filters 
of the IMU sensor are illustrated in Fig. 2. 

While in the final phase of signal processing and denoising, the in
ertial signal values are normalized by taking the signal scale into an 
account along with ignoring complex signal values for feature 
extraction. 

3.2. Hybrid feature descriptor methods 

Feature extraction is a key component in any machine learning- 
based system since it focuses on modeling data with a relevant set of 
attributes that encompasses the entire scenario. In this step, we pro
posed a hybrid feature model from four major domains to get mean
ingful features. These features include wavelet, time, frequency, and 
time-frequency domain feature descriptors. 
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3.2.1. Statistical features 
The statistical attributes Sv of each frame indicate the mean, median, 

mode, and maximum/minimum values of the inertial signal. These 
feature descriptors play a significant role in analyzing the overall vari
ations that occur as a result of each n activity as: 

Sv=
∑n

r=1

ar

n
,

∑n
r=1(V − V)

2

n − 1
,mi(sig)(Mi),mx(sig)(Xi) (1)  

where n is the framed data size, a is the coefficients in the whole vector, 
V indicates the value of initial vector and V depicts the mean of all the 
framed data. Fig. 3 illustrates a triaxial plot with the augmentation of 
different statistical feature descriptor of walking physical activity via 
USC-HAD dataset (see Fig. 4). 

3.2.2. 1D Haar wavelet transform (HWT) 
In the field of image and signal processing, the Haar wavelet trans

form (HWT) has emerged as a state-of-the-art technology. Generally, 
wavelets are based on mathematical methods for partitioning functions 
hierarchically. In our proposed approach, the Haar feature descriptor is 
utilized for pattern detection at a particular interval to analyze signal 
variability. Additionally, HWT has a wavelet-like structure, which 
makes it an efficient and robust signal processing tool [28,29]. Also, 
HWTs are represented by their indices (a, d), where ‘a’ indicates 
approximation coefficients and ‘d’ depicts detail coefficients. These co
efficients also assists in the estimation of the strength of the IMU signal 
and moreover contribute into accurate restoration and segmentation. 
The Haar Wavelet Transform (HWT) can be defined as: 

ψ(a)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 0 ≤ a ≤
1
2

− 1
1
2
≤ a ≤ 1

0 else

(2)  

where scaling function is denoted as ψ(a) . 

3.2.3. Hilbert Huang transform (HHT) 
The Hilbert Huang Transform (HHT) is acknowledged as quite 

effective when dealing with non-linear and diverse signal data. In our 
case, we have a source of time series data. To deal with particular 
physical activities, including walking, running, which involve repeated 
patterns with continuously shifting frequency and amplitude. 

Additionally, the acquired inertial data from sensors is mostly nonlinear 
in nature. 

The Hilbert Huang transform (HHT) splits the obtained time series of 
non-linear inertial data into distinct repeated components referred to as 
intrinsic mode functions (IMF’s), and the entire process is known as 
intrinsic mode decomposition (IMD) [30]. Additionally, both these 
components produce different frequency bands and they are capable of 
measuring shifts in instantaneous frequencies (IF). Thus, we can eval
uate the features of various activities in a meaningful way. The pro
cessed data P(t) can be determined by: 

P(t)=
∑n

i=1
ci + rn (3)  

where P(t) depicted the processed signal, ci denotes the ith IMF, and rn is 
the total remainder. 

3.2.4. Wavelet packet entropy 
Wavelet packet entropy (WPE) is an efficient and robust approach for 

IMU signals in time-frequency domain. Firstly, WPE decompose an IMU 
signal into various frequency resolutions comprising detail and 
approximation coefficients [31]. The mathematical equation (4) of WPE 
can be written as: 

dp =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d0,0(t) = p(t)
di,2j− 1(r) =

̅̅̅
2

√ ∑

c
h(c)di− 1,j(2r − c)

dl,2j(r) =
̅̅̅
2

√ ∑

c
g(c)di− 1,j(2r − c)

(4)  

where h(c) and g(c) are two filters utilized to extract ACs and DCs, and 
di,j depicts the reconstruction inertial signals at the ith and jth node. 

3.2.5. LEMPEL-ZIV complexity (LZC) 
The LZC method is a symbolic sequence technique based on coarse 

gaining estimation [32]. In our proposed approach, the inertial signal is 
first transformed into a finite-length sequence of symbols. Then, the 
transformed inertial signal is further converted into a binary sequence. 
Additionally, binary sequences with a median threshold Tm were 
employed to ensure stability of outliers. The LZ complexity along with 
the median threshold can be shown in equation (5) as follows: 

Inertial ​ sig(i)=
{

1, if s(i) ≥ Tm
0, if s(i) < Tm

(5) 

Fig. 1. System architecture of the proposed HDAR model.  
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Fig. 7 depicts the relationship between signal frequency and Lempel- 
Ziv Complexity (see Fig. 6) (see Fig. 8) (see Fig. 9) (see Fig. 5). 

3.3. Hybrid feature selection and classification 

In the proposed HDAR approach, feature descriptors are optimized 
via a well-known optimization algorithm, stochastic gradient descent 
(SGD). Then, the acquired optimized vector is catered to the random 
forest (RF) algorithm. The results of random forest are compared with 
multilayer perceptron and support vector machine (SVM). 

3.3.1. Optimization via stochastic gradient descent (SGD) 
Gradient descent is an effective approach for finding the best solution 

with a minimum cost function with a linear function. Gradient descent 
was initially used in neural network research in order to update network 
gradients. However, the gradient descent method may run slowly if all of 
the training data is processed at each epoch or if the training data set is 

extensive. To address this issue, we introduced the Stochastic Gradient 
Descent method (SGD) with minibatch as an optimizer that does not 
consume all of the training data [33]. However, minibatch SGD paired 
with random data selection reduces the cost and variability associated 
with conventional stochastic gradient descent. As a result, minibatch 
needs careful consideration while employing adaptive learning rates 
with initial parameters to achieve the lowest loss function. Thus, the 
learning parameters are corrected and the output is acquired dependent 
on the learning rate. Therefore, initially, a 0.0100 learning rate is set and 
the total number of iterations is preset at 1000, tuned via regularization 
parameters, the number of passes over the training set. 

The stochastic gradient descent (SGD) of all training set for a(k) and 
b(k) is represented as: 

θ= θ − η⋅∇θJ
(
θ; a(k); b(k)) (6)  

where η denotes minibatch size, and the minimum loss function is rep
resented as: 

Fig. 2. Signal Processing and Denoising. IMU sensors with raw (unfiltered) and 
denoised signals for walking activity via (a) Median filters, (b) Gaussian Filter, 
and (c) Moving Average Filter on the IM-WSHA dataset. 

Fig. 3. Triaxial vector plot of statistical features of the walking physical activity 
via USC-HAD dataset. 

Fig. 4. 1D- Haar inertial signal feature in a vector plot over physical activity 
(walking) of USC-HAD dataset. 
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θ= θ − η⋅∇θJ
(
θ; a(k:k+nbs); b(k:k+nbs)

)
(7)  

3.4. Random forest 

After the hybrid feature selection step, we catered acquired optimal 
feature descriptors to a random forest (RF) classifier in order to classify 
human physical activities. Random forest is an ensemble learning 
method utilized for classification and other related tasks that functions 
by training a substantial number of decision trees and generating a class 
that is the mean of the particular trees [34]. Additionally, the random 
forest comprises a unique variant of bagged trees, a technique for 
generating a training set. Bagging extracts samples from all three 
physical activity datasets, including IM-WSHA, USC-HAD, and 
MOTIONSENSE datasets. For each sample, a model is developed and 
used to make classification-based decisions. Finally, based on maximum 
votes, all of the decisions are combined to get the final result and de
cisions. Mainly, random forest is an ensemble classifier that is both 
exceptionally accurate and has a rapid training period. 

f̂ =
1
R

∑R

r=1
fb(z

′

) (8)  

where, z′ depicts the predictions for random samples. It is estimated by 
averaging the predictions made by all the various trees on z′. 

4. Experimental setting and analysis 

All experiments are conducted on a notebook (laptop) equipped with 
an Intel Core i5-9300H processor running at 2.40 GHz base frequency, 8 
GB DDR4 RAM, and a dedicated Nvidia GeForce GTX 1650 graphics card 
running Windows 10 Home 64-bit and MATLAB and Google Colab 
(Python) tools. Additionally, a framework has been established to 
evaluate the performance of our proposed model HDAR on three 
benchmark datasets, including USC-HAD, IM-WSHA, and the 
MOTIONSENSE datasets. Furthermore, we also employed the leave-one- 

Fig. 5. Empirical model decomposition (EMD) from the inertial signal over 
USC-HAD dataset. 

Fig. 6. Two level tree wavelet decomposition for an inertial signal data for 
exercise data over IM-WSHA dataset. 

Fig. 7. The result of Lempel-Ziv complexity and signal frequency modulation.  

Fig. 8. Stochastic Gradient Descent Optimizer with adaptive learning for a 
walking forward activity over USC- HAD dataset. 
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subject-out cross-validation (LOSO) method to evaluate our HDAR sys
tem’s validation performance in both indoor and outdoor conditions. 

4.1. The university of Southern California human activity dataset (USC- 
HAD) 

The USC-HAD dataset [35] is acquired by exploiting a motion node 
inertial device, which comprises a wearable network with 6◦ of freedom 
(DoF) for comprising and tracking three-dimensional motion. Addi
tionally, it is comprised of various sensors, fused with a gyroscope and 
an accelerometer, that provide real-time orientation information. These 
inertial sensors are embodied at the front right hip in order to get 
relevant signal data. A group of 14 individuals engaged in 12 distinct 
activities (including, jumping up, standing, sitting, sleeping, walking for
ward, elevator down, elevator up, running forward, walking left, walking 
right, downstairs, and upstairs). The sampling rate of the sensors 
employed in this experiment is 100 Hz. 

4.2. The IM – wearable smart home activities (IM-WSHA) dataset 

The IM-WSHA database [36] involves data from three IMU sensors, 
such as accelerometers, gyroscopes, and magnetometers. These IMU 
sensors are positioned at three distinct body locations, including the 
thigh, wrist, and chest, to continuously capture significant features of 
human life-log activities. Ten respondents, including five males and five 
females, covered 11 distinct tasks in a smart home scenario (such as, 
cooking, ironing, vacuum cleaning, drinking, exercise, phone conversation, 
reading book, walking, brushing hair, watching tv and using computer). 

4.3. The MOTIONSENSE dataset 

The MotionSense dataset [37] is a freely available open-source 
public dataset that comprises 6-DoF accelerometer and gyroscope 
sensor data from a smartphone. The volunteer’s smartphone is placed in 
his front pocket. Additionally, a diverse group of twenty-four volunteers, 
including 14 males and 10 females, covered six static and dynamic tasks 
in an indoor and outdoor environment, such as sitting and standing, 
walking and running, downstairs, and ascending. 

4.4. Evaluation of parameters using recognition accuracies 

In this setup, we analyze the performance of a random forest clas
sifier by catering to optimally selected feature descriptors of wavelet, 
time, frequency, and time-frequency using the USC-HAD, IM-WSHA, and 
MOTIONSENSE datasets. 

The experiment was conducted three times to assess the performance 
of the proposed HDAR system against three benchmark datasets. The 

confusion matrix for the USC-HAD dataset for twelve human physical 
activities is shown in Fig. 10, where an overall accuracy of 91.08% was 
attained. In the IM-WSHA dataset, Fig. 11 represents an average accu
racy of 91.45% over eleven life-log activities. Furthermore, the confu
sion matrix in Fig. 12 depicts the MOTIONSENSE dataset over six static 
and dynamic activities, with a recognition rate of 93.16%. 

The results of the comparison between the proposed HDAR approach 
and other sophisticated methods are shown in Table 1. In Tables 2–4, we 
compared the performance of the proposed HDAR system with two 
additional state-of-the-art approaches, including Multilayer Perceptron 
(MLP) and Support Vector Machine (SVM) classifiers, via accuracy, 
precision, recall, and F1 scores for all classes in the following datasets: 
USC-HAD, IM-WSHA, and MOTIONSENSE. 

We also analyzed one of the dataset namely USC-HAD. As illustrated 
in Fig. 13, we can simply discriminate between all 12 classes contained 
in the USC-HAD dataset. 

5. Discussions 

Our implementation of the HDAR framework is being developed to 
attain a high F-measure score and recognition accuracy by considering 
all three benchmark datasets. In this work, we proposed a robust and 
effective model that accurately extracts features from different body 
locations and generates a hybrid set of features. Initially, denoising is 
carried out over the inertial signals to remove extra motion artifacts and 
noise. For denoising, we have utilized a third-order median filter to 
remove the noise ratio without losing any vital information. After signal 
processing, hybrid feature descriptors are extracted from a different 
domain to attain better performance. Following that, acquired features 
are optimized via stochastic gradient descent (SGD) with minibatch in 
order to select optimal feature descriptors. Finally, various classifiers are 
used to evaluate the performance of the proposed HDAR system. Addi
tionally, physical activities from three benchmark datasets are classified 
over the random forest classifier, which has shown a significant recog
nition rate over other state-of-the-art methods. 

The following are the limitations of the proposed HDAR model. 

• While incorporating an inertial sensor is a viable approach in pub
licly available benchmark datasets, however, it may introduce 
problems associated with the stability and precision of a single 
sensor.  

• One of the drawbacks of the HDAR framework is transfer learning, 
which allows knowledge acquired by a single inertial sensor posi
tioned on a certain body position to be exploited by numerous 

Fig. 9. Proposed HDAR model over Random Forest classifier.  

Fig. 10. Confusion Matrix of 12 physical activities on the USC-HAD dataset 
using Random Forest. 
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sensors located in other positions. This prospect for transfer learning 
to be favored in a variety of situations has not been thoroughly 
analyzed.  

• The proposed approach is limited to monitoring physical activities 
pattern that exhibit uniformity in the way motion patterns shambles. 
Any inconsistent information included in the proposed approach 
disrupts the individual’s ability to recognize patterns unless the 
volunteer makes a smooth or consistent transition. 

6. Conclusion and future work 

In this work, an HDAR approach based on hybrid feature descriptors, 
such as time-frequency, wavelet, frequency, and time features, is pro
posed. Extracted features are further optimized by stochastic gradient 
descent (SGD) and classified via ensemble learning-based random forest 
to improve the recognition rate of human daily living physical activities 
via IMU sensors. These hybrid-based descriptors assess temporal mo
ments, relevant patterns, invariant and repeated motion patterns to 
optimize the performance of HDAR based systems. Additionally, this 
paper also compares the performance of the random forest classifier 
optimized by SGD with multilayer perceptron (MLP) and support vector 
machines (SVM). The experiments also revealed the influence of our 
proposed HDAR model in terms of performance measures such as ac
curacy, precision, recall, and F1-score. Our proposed HDAR framework 
assisted in the development of an ideal model of human life-log 
recognition. 

In future work, we will incorporate more complex behaviors and 
activities from different settings, including healthcare clinics and pro
fessional environments, by exploiting multimodal sensors. Additionally, 
we will also aim to design a self-annotated dataset in complex indoor- 
outdoor environments. 

Fig. 11. Confusion Matrix of 11 human life-log activities on the IM-WSHA 
dataset using Random Forest. 

Fig. 12. Confusion Matrix of 6 static and dynamic activities on the MOTION
SENSE dataset using Random Forest. 

Fig. 13. Random Forest classification on the USC-HAD dataset.  

Table 1 
Comparison of recognition accuracy of the proposed HDAR method with other 
state–OF–the-art methods over USC-HAD, IM-WSHA, and MOTIONSENSE 
datasets.  

Methods USC-HAD 
(%) 

IM-WSHA 
(%) 

MOTIONSENSE 
(%) 

Support Vector Machine 83.64 84.69 87.31 
BERT MODEL [38] – – 79.86 
Multi-fused Features [39, 

40] 
70 – 88.25 

Symbolic Approximation 
[41] 

84.30 – – 

Random Forest [42] 86.90 – – 
Proposed HDAR 91.08 91.45 93.16  
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U12 0.910 0.910 0.940 0.904 0.880 0.891 0.894 0.780 0.833  

Table 3 
Measurements of evaluation metrics of the proposed HDAR method over IM-WSHA dataset.  

IM-WSHA Random Forest Multilayer Perceptron Support Vector Machine 

Activities Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure 
W1 0.883 0.910 0.803 0.813 0.770 0.790 0.790 0.767 0.778 
W2 0.920 0.930 0.856 0.868 0.790 0.827 0.732 0.722 0.726 
W3 0.918 0.900 0.826 0.862 0.780 0.818 0.730 0.700 0.715 
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W10 0.920 0.930 0.856 0.870 0.790 0.828 0.725 0.720 0.722 
W11 0.922 0.950 0.876 0.875 0.800 0.835 0.765 0.740 0.752  

Table 4 
Measurements of evaluation metrics of the proposed HDAR method over MOTIONSENSE dataset.  

MOTIONSENSE Random Forest Multilayer Perceptron Support Vector Machine 

Activities Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure 
M1 0.947 0.910 0.928 0.883 0.870 0.876 0.866 0.840 0.852 
M2 0.957 0.900 0.927 0.890 0.880 0.884 0.878 0.850 0.863 
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